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LDV Measurements in Dynamically Separated Flows

M. S. Chandrasekharal and R. D. VanDyken 2

Navy-NASA Joint Institute of Aeronautics
Department of Aeronautics and Astronautics

Naval Postgraduate School, Monterey, CA 93943, U.S.A.

ABSTRACT

Two component, phase averaged mean velocity data have been obtained with an LDV system, on the upper
surface, near the leading edge of an oscillating airfoil undergoing compressible dynamic stall. In particular, the
effect of oscillation amplitude has been studied. The results show that at an oscillation amplitude of 10 degrees, a
separation bubble forms, that eventually bursts on the upstroke, well beyond the static stall angle. At 2 degrees
amplitude, the bubble forms on the upstroke, but dynamic stall occurs on the downstroke. The results reveal new
flow physics and the data sets serve as valuable quantitative information for validation of unsteady flow codes at
transitional Reynolds numbers. The maximum velocity seen in the flow is about 1.6 times the free stream value and
it occurs slightly downstream of the suction peak location. Some of the measurement difficulties are also discussed.

NOMENCLATURE

c airfoil chord
f frequency of oscillation, Hz
k reduced frequency = If

U0 0
M free stream Mach number
U,V velocity components in the x and y directions
U.o free stream velocity
V total velocity, V(U

2 + V 2 )
x,y chordwise and vertical distance
a angle of attack
a0 mean angle of attack
aCm amplitude of oscillation
4) phase angle of oscillation
w circular frequency, radians/sec

1. INTRODUCTION

Dynamic stall is an important problem of interest to the helicopter and fighter aircraft aerodynamicists. The
phenomenon relates to the production of high lift by rapidly pitching an airfoil. Its use in practice, however, is
limited by the undesirable structural effects induced by the strong pitching moment variation concomitant with the
convection of the dynamic stall vortex/vortical structure over the airfoil upper surface. The process if controlled
could be used to produce lift coefficients that are twice the normal values. To do so effectively requires a careful and
thorough understanding of the process. Basically, the dynamic stall flow is a classic case of forced, unsteady, leading
edge separated flow. The leading edge pressure gradient in the flow is 0(1000) and thus, the fluid encounters a region
of strong adverse pressure immediately following the suction peak, causing it to separate. The local velocity over the
airfoil leading edge before separation could reach supersonic values, due to the strong acceleration caused by the large
suction peak, even for subsonic free stream Mach numbers. The formation of a shock' and its interaction with the
local boundary layer adds another dimension to the problem. Additional complications are introduced by the state
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of the airfoil boundary layer and its ability to withstand the generated adverse pressure gradient. Compressibility
effects have been known1, 2 to promote stall by reducing the angle of attack for stall inception. The problem is
inherently complex and poses significant challe, ige to both experimentalists and computationalists in their efforts to
understand and control it.

As part of a larger study of the problem, the compressibility effects on dynamic stall of oscillating airfoils are
being studied at the Navy-NASA Joint Institute of Aeronautics using three nonintrusive optical diagnostic techniques.
Since the phenomenon is governed by the airfoil leading edge flow behavior, emphasis was placed on the details of the
flow development in this region. The study to be reported, focussed on obtaining the velocity field just around the
leading edge of an oscillating airfoil, using a two-component LDV system. The .xperimental data has been obtained
at a Mach number of 0.3, where compressibility effects set in and two amplitudes of oscillation ( 2 degrees and 10
degrees). A comparison of these results should offer new quantitative information on the effects of amplitude in
compressible unsteady separated flow. Also, an especially interesting rase of the flow is when the airfoil just reaches
an angle of attack close to the static stall angle in its motion and pitches down. The reason for this is it permits
study of the formation, growth and possible break down of the separation bubble as the airfoil oscillates. It may
provide some clues as to whether the dynamic stall vortex formation occurs during the bursting process of the bubble
or not.

2. DETAILS OF THE EXPERIMENT

2.1. The facility

The experiments were carried out in the Compressible Dynamic Stall Facility (CDSF) at the Fluid Mechanics
Laboratory of NASA Ames Research Center. The CDSF is an indraft wind tunnel with a 0.25m X 0.35m test section
and is equipped with a drive for producing a sinusoidal variation of the airfoil angle of attack. The flow in the tunnel
is controlled by a choked, variable area downstream-throat, to produce a Mach number range of 0 < M < 0.5. The
flow is produced by a 6MW, 108m 3/s, continuous running evacuation compressor. The airfoil mean angle of attack,
a, can be set to 0 < a < 150, the amplitude of oscillation, am, to 20 <m < 100, and the oscillation frequency, f,
to 0 < f < 100Hz. Fig. I1 shows a schematic of the drive system. More details are given in Ref. 3.

2.2. LDV technique in dynamic stall flows

A two-color, two-component, frequency-shifted, Argon-Ion laser based, off-axis, forward scatter TSI system was
used for velocity measurements. Traversing was accomplished by directing the 4 beams on to a 0.352m focal length
lens mounted on a computer controlled traverse. Fig. 23 presents a schematic of the CDSF instrumentation. The
signals were processed by TSI 1990 counters. Ipm polystyrene latex particles suspended in alcohol injected from the
tunnel inlet were used for seeding. Special phase locking circuitry enabled handling of the random LDV data and
the unsteady position data. The LDV data was acquired in the coincidence mode with the window width arbitrarily
set to 50psec. The coincidence pulse was used to trigger data acquisition and freeze the rapidly changing encoder
values till data transfer to the computer could be completed as shown in Fig. 3. The randomness of the LV data
and the need to record the appropriate phase angle when a coincident sample appeared demanded the use of the
inverse method described in the figure. The data acquisition and processing software incorporated the standard tests
of data validation, phase averaging by binning the data appropriately, identifying holes in the data if the number of
samples in any bin was less than a preselected value (50 in this case) and providing phase distributions of the velocity
components. Any time the standard criteria were not satisfied, the data set was rejected and a new set was acquired.
A minimum of 10,000 samples were collected per channel at each measurement point. The complete details of the
scheme could be found in Chandrasekhara and Ahmed4 .

2.3. ixperimnintal conditions

As stated earlier, the flow Mach number was set to 0.3, corresponding to a Reynolds number of 540,000. The
oscillation frequency was 21.6Hz, and the reduced frequency of 0.05. The airfoil section was NACA 0012 with 0.0762m
chord and was oscillated about the 25% chord point. The amplitudes of oscillation were 10 degrees and 2 degrees.

306 / SPIE Vol. 2052 Laser Anemornetry Advances and Applications (1993)



For the former, the airfoil angle of attack varied as

a = 100 - 100 sin wt

Thus, phase angle, wt = 00 corresponded to a = I10, 900 to a = 00 on its downstroke, 1800 to a = 100 on the
upstroke and 2700 to the maximum angle of attack of 200. For the case of 2 degrees amplitude, the variation in angle
of attack was between 8 - 12 degrees. The LDV probe volume was traversed in the range -0.167 < E < .167 and
0.083 < I < 0.167, with x and y measured from the airfoil leading edge at zero degrees angle of attack.

3. RESULTS AND DISCUSSION

Due to limitation of space, only sample results typical of the flow are presented below. First, the variations of
velocity with phase angle are discussed. Subsequently, velocity profiles and vorticity plots are analyzed.

3.1. Phase distribution of velocity

Fig. 4a shows the variation of the streamwise velocity U, with phase angle at x/c = 0.067 for a = 100 - 100 sin wt.
Dramatic changes can be seen in the phase plots at y/c locations close to the airfoil surface. At y/c = 0.083 during
the downstroke, the velocity decreases to 1.05Uo, at 0 = 900, a = 00; and begins to increase as expected during the
upstroke of the airfoil. This is true for fluid layers at other heights as well. However, at 0 = 1550, a = 5.50, the
velocity drops rapidly to 0.4U.o over 1550 < 0 < 2020, corresponding to 5.50 < a < 13.70. Such a drop can be
attributed to the presence of a separation bubble that penetrates the LDV probe volume as the airfoil pitches up.
Eventually at this location, the airfoil blocks off the beams and thus no data could be obtained until a phase angle
of ;s 3300. (This is the reason for the gaps in the distribution seen for some phase angles.) At the higher locations,
the phase angle range over which this drop occurs decreases since the bubble is narrow at the top. Fig. 4a shows
further that the bubble bursts between 0 = 2000 - 2160. Measurements of the V component of velocity presented
in Fig. 4b also show rapid increases in this phase angle range. In these figures, all measurement points below y/c
= 0.117 are within the separation bubble and the phase variation seen at y/c = 0.133 is typical of all other outer
points in the flow. The vertical velocity in the bubble is generally small, O(0.1U,,). In steady flow leading edge type
stall, bubble bursting is a rapid event. However, in the unsteady dynamic stall flow, it occurs over a range of phase
angles. Fig. 4b shows a gradually increasing V velocity until 0 - 2160, a = 15.90, which is known to be the dynamic
stall angle from the earlier schlieren studies2 . (The static stall angle for this Mach number is 12.4 degrees). At this
angle of attack, the dynamic stall vortex is shed and the airfoil shear laver detaches from the surface everywhere,
except at the leading edge. This causes a large V velocity and concurrently, the U velocity drops. These features are
distinctly seen in Fig. 4a and 4b. Similar plots were obtained for the 2 degree amplitude case, which also showed
the separation bubble. However, its bursting could not be so clearly established.

3.2. Velocity profiles in a cycle

Fig. 5 shows5 the range of total velocity profiles for the upstroke portion of the oscillation cycle at x/c = 0.083
for an amplitude of 10 degrees. At a low angle of attack of 6.90 on the upstroke, the mean velocity shows a point of
inflection through the bubble at y/c = 0.1. The local velocity is about 1.35Uo,. The inflection point moves outwards
as the airfoil pitches up, because the bubble grows during the process. Correspondingly, at the same y/c location,
lower velocities are measured. (As stated in Sec. 2.3, line y/c = 0 corresponds to the airfoil chord line at a = 00).
The bubble causes the drop seen at the lower locations. However, it should be noted that in this and other profiles,
whereas the velocities dropped to as low as 0.4U,,., no negative streamwise velocities were encountered. This is
believed to be due to the fact that in dynamic stall flow, the region of negative velocity is very small, O(0.01c); it was
difficult to seed the flow locally and also obtain optical access to the boundary layer, as its thickness was about one
probe volume diameter. The incidental blockage of the beams during parts of the oscillation cycle was responsible for
loss of the signal at different phase angles depending on the instantaneous height of the measurement volume above
the airfoil. Despite all these problems, the trends seen are consistent. As dynamic stall occurs at 15.90, the velocity
profile changes to an inverted 'S' shape. The flow develops unusual shear patterns in this state. At post-stall phase
angles, the velocities are still large.

Fig. 6a ,'nd 6b show the streamwise velocity profiles at x/c = 0.033 and x/c = 0 .083 for a = 100 - 20 sinwt.
In Fig. 6a, large velocity variations and hence shear are present at x/c = 0.033. The location of the peak velocity
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moves into the outer layers farther from the airfoil surface as it pitches from a = 80 - 120 and moves towards it on
the downstroke. The profiles become steeper as the lower velocity locations closer to the airfoil are encountered, as
evidenced by the velocity range of 0.UW, - 1.4U,, at a = 120 and 1.2U,: - 1.4U. at a = 80. Since no drastic changes
in the curvature of the profiles are seen, the profiles lead one to conclude that the bubble does not burst at this
location. In comparison, Fig. 6b for x/c = 0.083 offers nearly the same picture on the upstroke. However, inflection
and nearly inverted 'S' shaped distributions appear near the top of the cycle, which disappears again at a = 10.680
on the downstroke. This suggests a partial breakdown of the bubble. Recently obtained interferometry data has
shown that the flow remains fully attached throughout the upstroke, but separates mildly on the downstroke during
a small angle of attack range. The distinct differences seen at a = 10.680 on the upstroke and downstroke shows
that hysteresis is present in even this low amplitude unsteady flow.

3.3. Contours of z-component of vorticity

The z-component of vorticity normalized by U' is presented in Fig. 7 and Fig. 8. The distributions were
obtained by interpolating the velocity component data using a monotonic spline curve fit and calculating the gradients
from the fitted curve and also separately from the raw processed data using PLOT3D package. But the latter were
not as smooth as those shown in the figures. There could be substantial noise in the data due to the interpolation
and numerical differentiation used. Since this is common to all of the distributions discussed a comparison is still
valid. The uncertainty in the data is estimated to be about 20%.

Fig. 7 compares the leading edge vorticity field at a = 100 on the upstroke for the two amplitudes under
discussion. Fig. 7a drawn for an amplitude of 2 degrees shows that the peak vorticity level is z -30 units (clockwise)
and occurs very near the leading edge at y/c = 0.08. Much of the flow contains only clockwise vorticity only (contour
levels 3 - 8) between x/c = 0 to x/c = 0.15. This is to be expected since clockwise vorticity is added by the pitch-up
motion. Isolated small pockets of anticlockwise vorticity at a low level (of about 10 units) are also present. At
an amplitude of 10 degrees in Fig. 7b, a significantly higher clockwise vorticity of -60 units is seen which can be
attributed to the larger amplitude of oscillation and hence, a greater input of clockwise vorticity through the surface
motion. Of greater interest is that it is contained in structures located at around x/c = 0.1, y/c = 0.08. Just above
the leading edge, the vorticity levels are zero, although the airfoil is still pitching-up. It is believed that at the
leading edge itself, clockwise vorticity is still being added and hence present, but it has begun to be convected over
the surface. The large levels of the vorticity and the structures observed point to the fact that the vorticity has
begun to coalesce.

Fig. 8a and 8b show the vorticity contours for a - 10' - 20 sinwt for angles of attack of 11.53 degrees and 11
degrees. In Fig. 8a, the vorticity level has exceeded -40 units and is contained in a structure very close to the leading
edge. The region of vorticity level of -10 units extends to x/c = 0.15 and y/c = 0.1 in a large structure seemingly
attached to the leading edge. Fig. 8b shows that at 11.0 degrees angle of attack, the peak level has dropped to -25
units and the region of clockwise vorticity is much smaller than seen in Fig. 8a. Since the peak vorticity level was
found to increase again at a = 100(distribution not shown), it is clear that the vorticity is partially shed some where
between a = 11.530 - 110. This points to mild stall occurring on the downstroke. A comparison with the 10 degrees
amplitude case showed that vorticity levels dropped by as much as 40% once stall occurred. As reattachment and
flow development occurred, the levels began to increase again.

4. CONCLUDING REMARKS

Typical results of laser velocimetry measurements and vorticity field over an airfoil oscillating in compressible
separated flow have been discussed. The study points to the following conclusions.

1. Dynamic stall occurs as the separation bubble bursts and the leading edge vorticity is shed over a small range
of angles of attack. For the two degrees amplitude case, this happens on the downstroke, below the static stall angle.

2. Velocity profiles show a wide variation through the cycle. The maximum velocity reaches 1.6U"•.

3. The vorticity data shows that the more than twice the vorticity could be added to the flow by the large
amplitude oscillatory motion.
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